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Abstract A new approach is proposed for the experi-

mental study of the effective shear modulus of porous

elastic materials using the uniaxial tension test. The idea is

to measure strains at a few points surrounding a cluster of

holes that represents the structure of the material. The

representative cluster is placed in the material with the

same elastic properties as those of the matrix. The mea-

sured strains lead to the properties of the equivalent cir-

cular inhomogeneity, which would produce the same

elastic fields as from the cluster. An aluminum plate con-

taining a cluster of seven circular or hexagonal holes was

used. The effective shear modulus obtained from the strain

data was compared with theoretical predictions and various

bounds, and it was shown that the laboratory estimated

values are quite accurate. The experimental technique can

be used for the determination of the effective Poisson’s

ratio of porous media and/or cellular solids if more detailed

strain data are obtained.

Introduction

The problem of determining effective elastic properties of

inhomogeneous (composite) materials has received much

attention from researchers, who have proposed various

micro-mechanical models and approximate solutions [1–4].

Many of these models admit different forms depending on

whether particulate (three-dimensional case) or fibrous

(two-dimensional case) composites or porous media are

considered. Despite the number of different theoretical

approaches, not much experimental work related to the

study of the effective elastic properties, especially effective

shear modulus and Poisson’s ratio, of porous media can be

found in the literature.

The majority of the existing experimental studies

employ the concept of representative volume element

(RVE), which has to be large enough in comparison to

typical dimensions of the inhomogeneities to be charac-

terized by the same overall mechanical properties as the

whole material. In this context, Carvalho and Labuz [5]

studied the dependence of the effective Young’s modulus

of plates containing randomly distributed slots or circular

holes from the crack density or porosity, respectively. They

observed the dependence of the results on the number of

cracks or holes cut in the plates (for the same porosity or

crack density) and also the dependence on whether cracks

or holes were cut outside of the RVE. This suggests that the

proper size of the RVE and proper boundary conditions are

critical for the accurate determination of the effective

properties of porous media. Lobb and Forrester [6] tested

square metal sheets containing 3298 randomly distributed

overlapping holes, and it was clear that application of

proper boundary condition to the RVE was important (see

discussion in [7]).

If the material possesses certain symmetry, the concept

of a Representative Unit Cell (RUC) is often used, and it

has been of great value for analytical and numerical anal-

ysis of composites [8, 9]. This concept, however, cannot be

employed in experimental studies due to the technical

difficulties of implementing the proper boundary condi-

tions at the unit cell.

A. V. Pyatigorets (&) � J. F. Labuz � S. G. Mogilevskaya �
H. K. Stolarski

Department of Civil Engineering, University of Minnesota,

Minneapolis, MN 55455, USA

e-mail: pyati002@umn.edu

123

J Mater Sci (2010) 45:936–945

DOI 10.1007/s10853-009-4023-5



Among other methods often used for the experimental

studies of composite and porous media, the one that should

be mentioned is based on the measurements of longitudinal

and shear velocities of ultrasonic waves [10, 11]. This

method is applied to bulk three-dimensional materials

containing randomly distributed inhomogeneities and/or

pores of microscopic sizes and relies on accurate mea-

surements of the density and the waves’ travel times.

The objective of this work is to present a new experi-

mental methodology for determining the effective elastic

properties of porous two-dimensional materials. The

method employs the concept of a representative pattern

[12] and, thus, does not have limitations inherent to the

RVE and RUC, i.e., the necessity to provide proper

boundary conditions. For many isotropic two-dimensional

composites, the representative pattern is much smaller by

size than the corresponding RVE. This feature allows for a

more efficient design of specimens by using a smaller

amount of inhomogeneities. For example, a plate with only

seven holes placed in hexagonal arrangement is used in this

study, while the minimum amount of holes in a rectangular

RVE corresponding to the same geometry is 17, and

additional holes have to be drilled outside the RVE to

provide proper boundary conditions.

The theory used for problem analysis is presented in

‘‘Theoretical background’’. Section ‘‘Error estimation’’ is

devoted to basic error analysis that is necessary for the

efficient design of the experimental setup. The description

of the setup and the specimen is given in section ‘‘Exper-

iments,’’ which is also devoted to the calculations of the

elastic properties of the intact specimen. ‘‘Results and

discussion’’ highlight the comparison with some existing

analytical and numerical solutions. Several closing remarks

along with some guidelines for new experiments are dis-

cussed in the conclusion.

Theoretical background

The proposed experimental procedure is based on the

method of an equivalent inhomogeneity [12], which is

similar in a broad sense to Saint-Venant’s principle in

relation to the effective properties of composite media.

The method employs the concept of a representative pat-

tern (Fig. 1a, b) that is used to represent the structure of a

composite material. The concept of a representative pat-

tern does not fully comply with the concept of a repre-

sentative unit cell or representative volume element. The

basic idea of the method is to construct a circular inho-

mogeneity in an infinite plane (Fig. 1c, d) whose effects

on the elastic fields at distant points are the same as those

of a finite cluster of inhomogeneities arranged in a pattern

that represents the composite material in question. The

mechanical properties of the equivalent inhomogeneity

correspond to the effective properties of the composite

material. The method works equally well for isotropic

composites with periodic and random structures.

In order to determine the mechanical properties of the

equivalent inhomogeneity, values of elastic fields at a few

points located at some distance away from the cluster must

be obtained. The proposed experimental procedure

employs the measurements of strains at a few points sur-

rounding the representative cluster of holes, which may be

of any shape including elliptical holes and cracks (slots).

The idea of the proposed method and the geometry of the

problem are presented in Fig. 1.

Using the plane stress solution for a single circular

elastic inhomogeneity embedded in an infinite elastic plane

[13, 14], and assuming that the fields from the inhomoge-

neity and from the cluster of holes are the same at the point

of measurement, it can be shown [13] that strains at this

point are given by:

r
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Fig. 1 The geometry of the

problem. a Porous infinite plate.

b Representative cluster.

c Representative cluster of holes

in a plate with the same

properties as the original

material. d Equivalent

inhomogeneity
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Here ~l ¼ l=l1 , l and l1 are the shear moduli of the

matrix and the equivalent inhomogeneity correspondingly,

m and m1 are Poisson’s ratios of the matrix and the

inhomogeneity correspondingly, j1 ¼ ð3� m1Þ=ð1þ m1Þ
is the Kolosov–Muskhelishvili’s parameter for the

inhomogeneity, r? is the uniform far-field stress applied

to the plane, R is the radius of the inhomogeneity, and (r, h)

are polar coordinates of the point of measurement.

Following the definition of volume fraction provided by

Mogilevskaya et al. [12], the radius of the equivalent

inhomogeneity can be expressed as:

R ¼
ffiffiffiffiffiffiffiffiffi
Svoid

pn

r
; ð2Þ

where Svoid is the area occupied by voids in the represen-

tative cluster and n is porosity.

Experimental measurements were conducted within a

polar coordinate system (i.e., components of err and ehh

were measured), therefore expressions 1 were transformed

to polar coordinates as:

err þ ehh ¼ exx þ eyy;

ehh � err þ 2ierh ¼ ðeyy � exx þ 2iexyÞ � e2ih:
ð3Þ

Combining Eqs. 1 and 3 and extracting the real part, the

following relations containing strain components err or ehh

were obtained:

Relations 4 are linear of the type y = ax ? b. As soon as y

and x are evaluated, the unknown parameters a and b can

be easily found by using least squares fitting. Finally, the

shear modulus of the equivalent inhomogeneity is found

from parameter a, and the effective Poisson’s ratio follows

from the expression for parameter b.

Error estimation

Due to the fact that parameters yhh and yrr in Eq. 4 depend

on the values of strains ehh and err measured experimen-

tally, it is worth estimating at what locations r and h the

measurements would be the most accurate, so the error in

yhh and yrr would be minimal. Other parameters, namely

shear modulus, Poisson’s ratio, and applied stress, cannot

be varied to reduce the error in expressions 4, thus they are

considered to be fixed.

Assume that ehh, err, r, and h contain errors:

~err ¼ err þ Derr;

~ehh ¼ ehh þ Dehh;

~r ¼ r þ Dr;

~h ¼ hþ Dh;

ð5Þ

where D represents the absolute error, which may be

positive or negative. It turns out that the maximum absolute

errors of ~yhh ¼ yhh � Dyhhj j and ~yrr ¼ yrr � Dyrrj j are the

same and expressed as

Dykkj j ffi 2l
r1

Dekkj j þ Dhsinð2hÞj j
� �

2r2

R2
þ 2 ykkj j � Dr=rj j

þ H.O.T.; k ¼ r; h ð6Þ

where H.O.T. stands for higher order terms.

It is expected that the error of strain measurements is the

largest, and it can be shown that the first term in Eq. 6

contributes larger error than the second term. Thus, it fol-

lows from Eq. 6 that the closer the strains are measured to

the cluster, i.e., the smaller r is, the smaller error Dykkj j will

be. However, at very small distances the cluster of

inhomogeneities cannot be considered as a single equiva-

lent inhomogeneity. Numerical simulations conducted by

Mogilevskaya et al. [12] show that the minimal distance

4ehhl
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at which it is still possible to determine accurately the

properties of the equivalent inhomogeneity is twice the size

of the cluster. Therefore, it is reasonable to measure strains

at the distances larger than 2r.

As Eq. 6 depends on sin(2h), the choice of angles close

to 0� or 90� provides the smallest error Dykkj j: Moreover,

numerical modeling of strain fields for an infinite plane

containing a hexagonal cluster of circular holes (as in

Fig. 1c) reveals that the highest magnitude of radial and

circumferential strains is reached at the same angles (see

Fig. 2). Thus, the preferable location of sensors for mea-

suring strain should be close to 0�, 90�, 180�, and 270�.

The plots in Fig. 2 are obtained with the use of the

method described in [15]. The geometry of the solved

problem is as follows: the holes are arranged in a hexag-

onal pattern (as in Fig. 1c); the diameter of each hole is

d = 10.1 mm and the distance between the centers of the

holes is l = 15.2 mm; the Young’s modulus of the material

E = 72 GPa and its Poisson’s ratio is m = 0.33 (these

values correspond to average values of aluminum); stress

r? = 14.5 MPa is applied along the y-axis (as in Fig. 1c);

strains are measured along the circle with radius

r = 101.6 mm, which is approximately four times larger

that the size of the cluster of holes.

The maximum absolute error of ~xhh ¼ xhh � Dxhhj j and

~xrr ¼ xrr � Dxrrj j corresponding to Eq. 5 is found as

Dxkkj j ffi 6
R2

r2
cosð2hÞj j � Dr=rj j þ 3

R2

r2
Dhsinð2hÞj j

þ H.O.T.; k ¼ r; h ð7Þ

In this case, the error is inversely proportional to r2. How-

ever, both terms (R2/r2) are multiplied by small quantities

Dr=rj j and Dhsinð2hÞj j; values of which can be effectively

controlled. Thus, the assumption that more accurate mea-

surements can be obtained at smaller r remains valid.

It is necessary to note that expression 2 is not exact due

to the fact that the definition of the volume fraction given

in the method of an equivalent inhomogeneity differs from

the conventional definition. However, as it was shown by

Mogilevskaya et al. [12], the results for effective elastic

moduli found with the use of either of these definitions are

almost identical. Therefore, the conventional definition for

volume fraction (porosity) can be used to calculate the

radius of the equivalent inhomogeneity R.

Experiments

The main purpose of this paper is to provide an experi-

mental approach for determining the effective shear mod-

ulus of isotropic elastic porous materials. The present work

is particularly devoted to the study of infinite sheets per-

forated with circular or hexagonal holes that are uniformly

distributed in a hexagonal arrangement. The minimal rep-

resentative cluster of such a material consists of seven

holes (see Fig. 1a, b). The testing was accomplished by

subjecting an elastic plate containing such a representative

cluster of holes to uniaxial tensile stress under plane stress

conditions.

Despite the fact that the mechanical properties of the

material under consideration do not depend on the direction

of loading, numerical modeling revealed that stresses

locally depend on the direction of the applied load.

Figure 3 shows that the magnitude of major principal stress

is higher at certain locations for the case when the load is

applied along the closest packing direction (CPD, Fig. 3b)

in comparison with the case when it is applied in the

direction of mid-closest packing (mid-CPD, Fig. 3a). In

order to prevent any local yielding, it is convenient to

choose the position of holes at which the smaller local

stresses occur. It is seen from Fig. 3 that for a material with

Young’s modulus E = 72 GPa and Poisson’s ratio

m = 0.33, major principal stress reaches the value of

105 MPa when far field stress r? = 25 MPa is acting in

CPD, and it is below 95 MPa when the load is applied

along mid-CPD. Both of these values are well below the

plastic yield limit rY = 270 MPa. Nevertheless, the con-

figuration corresponding to the load application along mid-

CPD was chosen for experiments. Figure 3 is plotted for

the case when the diameter of holes is d = 10.1 mm and

the distance between their centers is l = 15.2 mm. In order

to investigate the stress distribution in specimens with

higher porosity, similar modeling was conducted. In this

case, the diameter of the holes d = 13 mm and far field

stress r? = 25 MPa was applied along mid-CPD. It was

found that maximum principal stress does not exceed

Fig. 2 Strain variation along a circle with radius r = 101.6 mm

(4 in.) in an infinite plate with the representative cluster of holes
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104 MPa and it localized at the sides of the most right and

the most left holes (as in Fig. 3a). The stress does not

increase significantly between the holes due to their

shielding effect on each other.

The specimen used in the series of experiments was a

rectangular aluminum (alloy 6061) plate with the dimen-

sions presented in Fig. 4a (all dimensions in Fig. 4 are

given in millimeters). The plate was 1.6 mm (0.063 in.)

Fig. 3 Distribution of major principal stress in an infinite plate with a representative cluster of holes. Far field stress is applied along a mid-

closest packing direction (mid-CPD), b closest packing direction (CPD). Dimensions are given in inches

(a) (b)Fig. 4 a Geometry of the

specimen. Steel reinforcing

plates are shown on the top part

of the figure by the dashed line.

b The dimensions of the largest

hexagonal holes cut in the plate.

Dimensions are given in

millimeters
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thick, with a plane area 1117.6 mm 9 520.7 mm (44 in. 9

20.5 in.). During the tests, the plate was pulled in tension

along its length. In order to provide uniform loading, the

aluminum plate was connected to steel reinforcing plates

through a set of holes drilled at the lower and upper ends

(Fig. 4). The thickness of the reinforcing plates was 1.6 mm,

and they were attached to the aluminum plate from the front

and back (in total four steel plates were used) by a system of

steel pins of approximately the same diameter as the holes

(d = 9.7 mm). The reinforcing plates then were loaded

through a single hole with diameter d = 9.7 mm by a steel

dowel. All the holes were located and drilled within the

accuracy of at least 0.1 mm. For better alignment, two

additional holes of smaller diameter were drilled in the steel

plates and then were tightened with bolts.

In order to check the homogeneity of the stress distri-

bution across the specimen, three linear strain gages were

attached at approximately one third of the distance between

the arrays of holes. These strain gages are numerated by 1,

2, and 3 in Fig. 4. One strain gage was glued along the

middle line of the plate (gage # 2) and the other two were

placed approximately in the middle of the right and left

halves of the plate. All gages were placed at the same

vertical position. The length of the strain gages was 3 mm,

which provided minimal error in pointwise strain mea-

surements. The resistance of the strain gages was

120 X ± 0.5 X, and their coefficient of thermal expansion

was 23 9 10-6 �C-1. Temperature effects were not an

issue as the temperature was kept approximately constant

around 21 �C throughout the whole series of experiments.

A quarter Wheatstone bridge was used for measuring the

change in resistance of the strain gages. The bridge was

powered with 5 Volts, and the output was amplified so it

varied in the range of ±1 V. Then the output was digitized

with a 12 bit analog-to-digital converter (ADC), and data

were recorded at an interval of 1 s.

First, the original plate without the representative cluster

of holes was tested. It was found that the distribution of

stresses along the testing region was approximately uni-

form, and the difference between the strains measured at

the centerline of the plate and close to its edges was less

than 3%. Monitoring of the uniformity of load distribution

was also conducted during each test. The initial tests,

conducted without reinforcing plates when only the central

holes of the aluminum plate were loaded, revealed that the

strain difference may be as high as 10–12% at the moni-

tored region.

Eight T-rosette strain gages, placed at two circles of

radii 101.6 and 177.8 mm surrounding the representative

cluster of holes, were used to measure radial and circum-

ferential strains in the plate. According to the error analysis

presented, the location of strain gages was chosen to be

close to 0�, 90�, 180�, and 270�. The exact location in a

polar coordinate system is provided in Table 1 (the angles

are calculated counterclockwise from the x-axis, as in

Fig. 1c). The error with which the location of strain gages

was determined was not more than Dh = ±0.5� and

Dr = ±0.5 mm. The technical parameters of the T-rosette

strain gages correspond to those for the linear strain gages.

The sensitivity of the load cell was 1.09 kN/mV, and the

data were digitized with 12 bit ADC and recorded at an

interval of 1 s. All recording devices were synchronized

between each other and the error of synchronization did not

exceed 1 s over 1 h time interval.

The size of the circular holes in the representative

cluster corresponded to certain drill sizes. Each next set of

holes was overdrilled from the previous set to increase the

porosity of the representative cluster, while their location

remained the same. Lastly, hexagonal openings were cut in

the plate in place of circular holes. This geometry may be

considered to be corresponding to honeycomb cellular

solids, which was theoretically studied by various

researchers (e.g. [16]). In total, four sets of holes and two

sets of hexagonal openings were studied. Their sizes and

corresponding porosity are given in Table 2.

For the case of hexagonal openings, the hole diameter in

Table 2 means the distance between two opposite sides of

the hexagon (Fig. 4b). The central hole was drilled in the

geometrical center of the aluminum plate, and the position

of its center was taken as the origin: (x, y) = (0, 0). The

distance between centers of other holes and the origin was

7.62 mm. The error in locating the holes did not exceed

±0.1 mm.

The Young’s modulus of the intact plate was determined

based on the readings from the three linear strain gages and

far-field stress data, which were determined by dividing the

applied load by the cross-sectional area of the plate

(833.12 mm2). The obtained value for the Young’s mod-

ulus was E = 67.9 ± 0.1 GPa.

The calibration tests revealed that the response was non-

linear for small load applied to the specimen. This is

explained by the fact that the aluminum plate was slightly

bent. Therefore, before starting any measurements, the

Table 1 T-rosette strain gages locations

Gage # 4 5 6 7 8 9 10 11

Angle h from Ox 10� 80� 105� 265� 92� 175� 258� 277�
Radius r = 101.6 mm r = 177.8 mm

Table 2 Parameters of the openings

Porosity n, % 2.42 14.27 27.77 44.84 51.24 65.88

Hole diameter, mm 2.49 6.05 8.43 10.72 10.91 12.37

Hole type Circular Hexagonal
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specimen was preloaded to 5 kN. The measurements were

then proceeded until the load reached 20 kN, and the

readings were taken in real time. The specimen showed

elastic behavior during the tests for the loads applied. The

measurement were taken upon loading and unloading of

the specimen and repeated four times for each porosity.

The stress–strain curves obtained for each strain gage

were fitted by linear regression. The coefficient of deter-

mination (COD), or R2, was between 0.995 and 1.0 for all

fitted data, confirming that strain changed linearly with the

load. Having stress–strain response for each data set, the

value of load corresponding to 15 kN was used to obtain

corresponding strains.

It was found that the readings from the strain gages

located at the larger circle (r = 177.8 mm) contained sig-

nificant errors and could not be used to provide accurate

values for the elastic properties of the equivalent inhomo-

geneity. As these sensors are located closer to the plate

edges, their strain readings are prone to larger errors due to

the larger nonuniformity in stress distribution and edge

effects. In addition, the values of strains obtained from the

strain gages at the larger circle are much closer to the

values of far-field state of strain, and may not represent

well the effect of circular holes in the plate.

Results and discussion

Equation 4 was used to calculate the shear modulus l1 of

the equivalent inhomogeneity and its Poisson’s ratio m1. It

is more convenient though, to use a slightly modified

version of Eq. 4. Adding xhh and xrr to the left-hand side

and the right-hand side of the first and the second expres-

sions 4 respectively, yields

yhh þ xhh ¼ ðaþ 1Þxhh þ b;

yrr þ xrr ¼ ðaþ 1Þxrr þ b;
ð8Þ

where yhh, xhh, yrr, and xrr are defined in Eq. 4. The values

of independent variables (xhh and xrr) and corresponding to

them values of the left-hand side of Eq. 8 create a data set

that needs to be sorted in ascending order before any least

squares fitting can be done. The data from eight strain

gages results in eight points in the data set for each value of

r. Eq. 8 include the Poisson’s ratio m of the intact material,

where m = 0.315 ± 0.003 was found through numerical

simulations using known (measured) Young’s modulus

E = 67.9 GPa and values of strains measured at several

points.

For the case of r = 101.6 mm (smaller circle), plots

corresponding to Eq. 8 are presented in Fig. 5. The lines

are fitted by linear regression, and the parameters of fitting

are given in Table 3. Effective shear modulus can be found

from the slopes of the fitting functions, and the values are

provided in Table 3. Due to the ability to simulate elastic

fields in infinite media perforated with circular holes, this

information can be used for the theoretical determination of

the effective shear modulus, as it is described in [12].

These results are given in Table 3 for the first four

porosities, which correspond to circular holes.

It can be seen from Table 3 that the slopes accurately

define the effective shear modulus of the equivalent inho-

mogeneity. However, it was found that the data for the

intercept b cannot provide accurate values for the effective

Poisson’s ratio. This is due to the fact that Poisson’s ratio

depends on both parameter b and the effective shear

modulus, associated with some error (see Eq. 4). It follows

from the results of numerical simulations that the accuracy

of the determination of Poisson’s ratio can be significantly

increased if 19 holes are considered in the representative

cluster (for the hexagonal arrangement) instead of seven

holes, as in the present work. In other experimental studies,

the effective Poisson’s ratio is usually not measured

directly, but rather expressed through the effective bulk and

Young’s moduli [17], which have to be measured very

accurately to provide reasonable values for Poisson’s ratio.

As expected, the effective shear modulus decreases as

the porosity increases. The good match of experimental and

numerically modelled data is evident. Some noticeable

difference between experimental and theoretical predic-

tions for the porosity n = 14.27% can be explained by the

experimental errors (in this case some mechanical prob-

lems in the load frame were observed, which resulted in

noticeable noise in load and strain measurements).

The results for the effective shear modulus given in

Table 3 are compared (Fig. 6) with those obtained from the

Differential Effective Medium (DEM) method [18], where

a solution to the problem of cylindrical inhomogeneities

randomly distributed in a transversely isotropic composite

can be found. DEM results in a system of ordinary dif-

ferential equations that can be solved analytically for the

case of hollow cylinders to obtain the effective transverse

shear modulus. The results obtianed with DEM agree well

with the experimental results for small porosities.

The topmost graph in Fig. 6 represents the well known

Hashin–Shtrikman upper bound on the effective shear

modulus [19], obtained for the limiting case when the

properties of one of the phases are equal to zero (voids).

The corresponding lower bound is trivially zero. The

Hashin–Shtrikman bounds for the effective shear modulus

may be considered as the best possible bounds in terms of

volume fraction [1]. These bounds, however, do not take

into account the structure of the material and interactions

between inhomogeneities. Nevertheless, for the case of the

porous medium considered in the present work, the upper

bound provides quite accurate results if compared with

experimental (circles) and numerical (squares) data for
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porosities below 50%. Besides, all results and the upper

bound obtained for small porosities match dilute concen-

tration results [20]. For larger porosities, the Hashin–

Shtrikman upper bound diverges from the experimental

data and high-concentration results obtained by Day et al.

[7] for circular holes. It is seen from Fig. 6 that the Hashin–

Shtrikman upper bound is not able to predict the percola-

tion limit that occurs at 91% porosity for circular holes.

Lastly, experimental results are compared (Fig. 7) with

highly-accurate numerical results obtained by Eischen and

Torquato [9]. The authors exploited the concept of a rep-

resentative unit cell and used the boundary element method

to obtain effective elastic properties of porous plates. One

of the examples provided by Eischen and Torquato (Table

IX in [9]) is similar to the problem considered in the

present work with the only difference that the Poisson’s

ratio of the matrix m = 0.33 was used in their work. Nev-

ertheless, it is reasonable to compare the present results

with those provided by Eischen and Torquato due to the

following fact. Using the method of the equivalent inho-

mogeneity, it has been shown that the difference in the

effective shear modulus for the cases when Poisson’s ratio

of the matrix is 0.315 or 0.33 is negligible (for example,

compare the location of squares and solid line in Fig. 7),

Fig. 5 Least squares fitting of experimental data (see Eq. 8)

Table 3 Fitting parameters for Eq. 8 for strains measured at the smaller circle (r = 101.6 mm)

Porosity n, % Slope (a ? 1) Intercept (b) R2 (COD) l1 (exp), GPa l1 (theor), GPa l1/l (exp) l1/l (theor)

2.42 1.03144 0.14961 0.97437 23.49 24.01 0.91 0.93

14.27 1.17804 0.23102 0.99306 15.57 17.12 0.60 0.66

27.77 1.28168 0.36512 0.99187 11.77 11.68 0.46 0.45

44.84 1.4587 0.5353 0.9958 7.23 6.64 0.28 0.26

51.24 1.58252 0.70824 0.99694 4.93 – 0.19 –

65.88 1.77331 0.9362 0.99568 2.58 – 0.09 –
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and both of these results match closely the results of

Eischen and Torquato. This allows for comparison of the

experimental data with the results from [9], and the good

agreement is shown in Fig. 7. It should be noted that the

results from [9] were obtained for holes of circular shape.

Thus, any data shown in Fig. 7 for the porosity n [ 0.5

(except for the experimental results) should be considered

as approximate.

Despite the fact that holes with circular and hexagonal

shapes were studied in this work, the proposed experi-

mental methodology can be used for the determination of

the effective properties of porous materials containing

holes of any shape or even cracks (slots). Their distribution

can be periodic or random as long as the effect on the

overall elastic moduli is isotropic. The most appropriate

shape of the cluster appears to be circular since the method

presented here is based on the analytic solution for a single

circular inhomogeneity. However, other clusters with cer-

tain number of symmetries may be equally appropriate.

This opinion is based on the work of Ekneligoda and

Zimmerman [21], who discuss the issue of whether a single

hole placed in an infinite elastic medium behaves isotrop-

ically. Theoretically, even a rectangular shape of the cluster

can be used. For example, Mogilevskaya et al. [12] studied

numerically the effective properties of porous media with a

random distribution of circular holes. Only 34 holes were

considered in the representative cluster, and the cluster had

a square shape. The distances at which the values of elastic

fields were found to compute effective properties were

50–70 times larger than the size of the cluster. However,

from the experimental point of view, this is not practical

because of the space limitations and loss of the measure-

ment accuracy. In experiments, the strain measurements

should be taken at much closer distances (2–4 times size of

the cluster), thus the shape of the representative cluster is

important. The choice of a nearly circular shape of the

cluster ensures that the cluster behaves isotropically at

small distances.

Conclusions

This paper is concerned with the experimental study of the

effective shear modulus of porous materials based on the

equivalent inhomogeneity method. According to the

approach, a small representative cluster of inhomogeneities

of the material is placed within the intact material with the

same properties as those of the composite’s matrix, and

strains are measured around the cluster. The major

advantage of the proposed experimental method is that

there is no need to consider a representative volume ele-

ment (RVE). Therefore, the number of holes in the repre-

sentative cluster may be much smaller in comparison with

the number of holes in the RVE.

It should be noted that the numerical simulations con-

ducted to obtain the theoretical predictions cannot sub-

stitute for the experimental determination of the effective

properties. This is due to the limitation of the numerical

model dealing with circular holes only. Even if the elastic

fields are simulated with other methods, e.g. finite element

or boundary element methods, it is difficult to obtain

accurate results for complex geometries (for example,

multiple random cracks or cellular solids). Experiments can

be conducted for the openings of any shape and any

arrangements as long as the representative cluster is

isotropic.

Fig. 6 Experimental results for the effective shear modulus in

comparison with theoretical predictions. Squares correspond to

numerically modelled data from Table 3

Fig. 7 Experimental results for the effective shear modulus in

comparison with the results obtained by Eischen and Torquato [9].

Data from [9] are obtained for m = 0.33, while all other data in the

figure are obtained for m = 0.315
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The effective shear modulus for the holes of circular and

hexagonal shape has been accurately determined from the

strain measurements conducted at the distance of about

four times larger than the size of the cluster. The results

were compared with the predictions from the Differential

Effective Medium Model, low- and high-concentration

approximations, and from numerical analysis. It was shown

that experimental results lie between bounds and match the

numerical results.

The measurements conducted at the distance seven

times larger than the size of the cluster did not provide

accurate strain data to calculate effective properties of the

porous medium. The accuracy of the results can be

increased if the measurements are taken closer to the

cluster of the holes to avoid any effects connected with the

finite size of the plate. Conducting measurements in such

locations would also allow reducing the overall size of the

specimen.
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